Take a moment to think about your own oral health. It’s something which far too many of us often overlook but this shouldn’t be the case. In fact, it is a very important aspect of health.
Our blog this week is an updated and adapted version of commissioned articles by Dr Paul Clayton PhD, author and international speaker. The blog will include:
- the links between diet, lifestyle and oral health
- risk factors for periodontal disease
- an explanation of the two types of malnutrition we see today
- an overview of the acute and acquired immune system
- nutrition recommended to support the immune system
There are many established links between diet, lifestyle and oral health. Excessive sugar (and poor oral hygiene); inherent acids and sugars in soft drinks have both acidogenic and cariogenic potential, resulting in dental caries and potential enamel erosion; tobacco and high octane alcoholic beverages both increase the risk of oral cancers, especially when combined; smoking is linked to tooth loss, and so on. As the evidence base for these links has accumulated, various nutritional strategies have come on board, which have done a great deal to improve oral health. However, there is a good deal more to come.
Risk Factors for Periodontal Disease
If we review the risk factors for periodontal disease, they include (apart from xerostomia and poor oral hygiene), age, smoking and the use of immuno-suppressant medications such as steroids, HIV, diabetes, DNA mutations, malnutrition or dysnutrition. It seems likely that malnutrition is the most common of these risk factors. For example, recent studies have shown that around 70-80% of malnourished patients currently enter and leave hospital without action being taken to treat their malnutrition and without the diagnosis appearing on their discharge summary.
One might reasonably speculate that many patients are hospitalised because of problems related to malnutrition, and that hospital patients are therefore unrepresentative of those still in the community. Here too, however, a significant proportion of middle-aged and elderly subjects have been found to be malnourished, and immuno-compromised to the point where their immune function is improved by supplementation.
Two Types of Malnutrition
Type A malnutrition, characterised by a deficiency of a single micronutrient (often the water-soluble vitamins C, B1 and B3) and often combined with calorific deficit, is uncommon in the developed nations. Instead, what we see is a pattern of multiple micronutrient and phytonutrient depletion, generally combined with calorific balance or excess. This is termed Type B malnutrition, or dysnutrition; and it is emerging as a likely common cause of the majority of the degenerative diseases, and much of the process of ageing as we know it.
The reasons for this prevalent pattern of multiple micronutrient depletion are structural and well established. Perhaps the single most important cause of Type B malnutrition is that we don’t eat enough. This sounds paradoxical given that we are getting fatter, but we actually eat far less than we used to.
Looked at through a longer lens, humans were designed to live active lives, and to consume between 3000 and 4000 calories per day. No longer hunter-gatherers, we live sedentary lives, working at a computer screen during the day and basking in the glow of the plasma screen at night.
The result is that we burn, on average, slightly fewer than 2,000 calories a day. Our appetites have indeed shrunk, but not quite to match; thus leaving most of us in a slight but persistent state of calorie excess, which explains, over time, the weight gain.
But by cutting our food intakes in half, we have at a stroke halved our intakes of many essential micronutrients. To make matters worse, our dietary habits are out of joint. We no longer eat many unprocessed foods, but increasingly rely on pre-processed, pre-cooked and ready-to-eat meals and snacks which, in many cases, are significantly less nutritious than the original ingredients would have been.
These and other factors have dramatically reduced our intakes of such valuable micro and phyto-nutrients as flavonoids, sterols, phospholipids, methyl groups, selenium and resistant starch – resulting in the widespread problem of Type B malnutrition we see today. But does it matter?
Well, yes, a person who is depleted in anabolic co-factors and the anti-catabolic agents is heading for trouble. Tissue renewal is down, tissue decay and breakdown are up; he or she is now catabolically dominant, accumulating tissue damage, and heading towards clinical illness. To make matters worse, Type B malnutrition generally worsens as we age, due to such factors as dental problems, difficulties with swallowing, a deteriorating sense of taste and appetite, and often reduced finances.
This neatly explains why we become progressively more catabolically dominant, and ever more likely to become diseased, as the years and decades pass. It also explains why, as we age, our immune functions tend to become ever more compromised.
The Immune System (Acute and Acquired)
The immune system can be divided into two distinct but overlapping sub-systems; the innate and the adaptive (or acquired) immune systems. The adaptive immune system is the one with the memory function, and is involved in immunisation, allergy and auto-immunity. Once the adaptive immune system has learned to recognise an enemy (after an initial infection or after vaccination), it remembers the enemy’s characteristics.
On second exposure to the threat, the memory cells recognise it and generate an immune response involving highly specific weapons such as antibodies. This is a powerful, sophisticated and highly specific system, but it is complex, slow to mount and often insufficient to protect the host against the first onslaught of a virulent bacterium or virus.
Unlike the adaptive immune system, the innate immune system springs into action the moment it recognises the presence of a pathogen. It is designed to protect us from the many non-specific pathogenic threats that exist in the world. It is our first line of defence; the adaptive immune system is the second line.
Although we are covered in potential pathogens every second of our lives, and inhale and ingest them with every breath and mouthful we take, we rarely develop clinical infections. The innate immune system protects us for over 99% of the time, confining pathogenic bacteria, viruses and moulds to safe and generally surface areas of the body and, self-evidently, preventing the vast majority of them from gaining access to deeper tissues, where they could cause problems.
The very complexity of the adaptive immune system can cause problems. In autoimmune disease the adaptive immune system confuses an element in the body with a pathogen that it partly resembles, and attacks the host’s own tissues (as in rheumatoid arthritis, multiple sclerosis, systemic lupus, Hashimoto’s thyroiditis etc). In allergy, the adaptive immune system over-reacts to a stimulus such as animal dander or a species of pollen, and causes the well- known symptoms of allergic conjunctivitis, rhinitis or asthma.
The innate immune system combines physical and chemical barriers (such as the skin, the mucociliary escalator which continually cleans the respiratory tract, and the acid bath of the stomach); biochemical elements such as certain fatty acids and antibacterial peptides; and immune cells such as macrophages and granulocytes.
It has long been thought that this system of defences merely existed; but one of the biggest breakthroughs in immunology has been the recent discovery that the effectiveness of these cellular components has been compromised by our modern lifestyle, and that it can be restored with one of a limited number of immuno-primer compounds which the innate immune cells recognise.
The innate immune system is rather more basic. In evolutionary terms it is much older than the more sophisticated acquired immune system. It is less specific; and its key components are macrophages and Natural Killer (NK) cells. Broadly, these patrol the body and look out for anything that doesn’t belong there. If macrophages spot a bacterium, they swallow it whole and try to digest it.
If NK cells recognise a virally infected cell or a cancer cell in the body, they will kill it so that it cannot produce more viruses or replicate. It is now widely understood that it is the innate immune system that keeps us healthy most of the time.
Immune cells in the innate immune system have no memory, but they have receptors which recognise a small number of compounds presenting in the cell walls of most pathogens. These include lipopolysaccharides (Gram negative bacteria), lipotechoic acids (Gram positive bacteria), peptidoglycans (Gram + and – bacteria), flagellin and the 1-3, 1-6 beta glucan present in the cell walls of moulds and yeast. These receptors enable the innate immune cells to recognise the vast majority of potential pathogens, and respond rapidly and effectively to them.
In fact, recent work at Brown University, the Universities of Louisville and Berlin, and at the Mayo Clinics has shown that constant stimulation of these receptors is actually necessary to keep the innate immune cells in a fully functional mode; and that the beta glucan in moulds and yeasts are the most effective of all the immuno-primers, acting via the CR3 receptor which occurs on all innate immune cells.
These compounds are called ‘immuno-primers’ rather than the older term ‘immuno-stimulants’, which is inaccurate and misleading. They do not stimulate the immune cells at all, but merely prepare them for action. For innate immune effector cells (such as a macrophages or neutrophil granulocytes) to phagocytose and kill pathogens most effectively, the CR3 receptor must be occupied; supplying beta glucan in pure form to occupy this receptor is simply getting the immune cells ready to act as and when it is appropriate for them to do so.
Humans and other animals evolved in an environment without soap, antibiotics or food sterilisation technology; in short, a highly microbiologically contaminated environment. In such an environment, our innate immune systems were constantly challenged, and constantly on high alert. In the last century, however, we have progressively sanitised our environment.
The food chain in particular, in which formerly every item would have been at least borderline contaminated with yeast/mould, has been sanitised to near sterility thanks to the agricultural use of fungicides, and modern food technology. This in turn has left our immune systems unbalanced (the so-called ‘hygiene hypothesis’), resulting in reduced immune function and, paradoxically, a hugely increased incidence of allergy.
Some clinical scientists have speculated that allowing people to acquire infections more frequently would be helpful, but this is a crude and potentially dangerous approach. Far simpler to re-engineer 1-3, 1-6 beta glucan back into our diet, via supplements; a strategy already shown to dramatically enhance immune function and reduce the risk of disease in many species including our own.
Improving a patient’s general nutritional status, therefore, will often lead to an improvement in immune function.
Nutrition for the immune systems
As the numbers of antibiotic-resistant bacteria in our environment continue to increase, it makes good sense to ensure that your immune systems are working as effectively as possible. But, as with the adaptive immune system (acquired immune system) there is persuasive evidence that the innate immune system is too often in disrepair, due again to malnutrition.
Therefore, a comprehensive micronutrient support programme is a good foundation. Onto that foundation you can add a second layer of very specific innate immune support agents. They include vitamin D, the trace element selenium, and the 1-3, 1-6 beta glucan derived from yeast.
Beta glucan in particular has a very critical role to play, as it actively primes innate immune cells via the CR3 receptor as mentioned above; one of a small group of so-called toll-like receptors which must be occupied if the overall innate immune system is to respond appropriately to the presence in the body of a pathogen.
Selenium is important too, as it is critical to NK cell function, as well as having a positive influence on inflammation and immune responses; selenium depletion is particularly prevalent in the UK and has been shown to impair immune responses to viral infection.(21) Like selenium, vitamin D is also essential to innate immune cell functions; and also like selenium, depletion is very common.
To conclude, when combined with broad-spectrum nutritional support, this approach leads to rapid improvements in oral health.
Key Takeaways
- There are established links between diet, lifestyle and oral health.
- Risk factors for periodontal disease include age, smoking, use of immuno-suppressant medications such as steroids, HIV, diabetes, DNA mutations and malnutrition.
- Type A malnutrition, characterised by a deficiency of a single micronutrient (often the water-soluble vitamins C, B1 and B3) and often combined with calorific deficit.
- Type B malnutrition typically is a pattern of multiple micronutrient and phytonutrient depletion, generally combined with calorific balance or excess.
- There has been a dramatic reduction in intake of valuable micronutrients and phyto-nutrients as flavonoids, sterols, phospholipids, methyl groups, selenium and resistant starch – resulting in the widespread problem of Type B malnutrition seen today.
- The immune system can be divided into two distinct but overlapping sub-systems; the innate and the adaptive (or acquired) immune systems.
- The adaptive immune system is the one with the memory function, and is involved in immunisation, allergy and auto-immunity.
- The innate immune system springs into action the moment it recognises the presence of a pathogen.
- Many micronutrients play an essential role in immune function.
- Improving a patient’s general nutritional status will often lead to an improvement in immune function and a comprehensive micronutrient support programme is a good foundation.
If you have any questions regarding the topics that have been raised, or any other health matters, please do contact me (Jackie) by email at any time (jackie@cytoplan.co.uk)
Jackie Tarling and the Cytoplan Editorial Team
Introducing our BRAND NEW Dentavital range!
Dentavital 1-3 1-6 Beta Glucan – Beta 1-3, 1-6 glucans derived from fungi and yeast are essentially known for their immune-modulating effects. This is a unique formula which optimises the function of the immune system to help the body defend itself against viral and bacterial invaders and also helps heal wounds as well as having anti-inflammatory activity.
Dentavital Aloe XL Inner Leaf Juice – Aloe Inner Leaf is a single concentrate containing unprocessed inner leaf gel. It is used primarily for its anti-inflammatory and immune amplification properties.
Dentavital Bifidophilus – Bifidophilus contains 6 strains of native bacteria. Native bacteria are natural (friendly) inhabitants of our digestive system where they serve as powerful immune system stimulators and regulators.
Dentavital Bone Complex – Bone Complex Capsules contain excellent levels of all the important vitamin & mineral nutrients associated with bone support and bone health. The formula includes wholefood calcium, magnesium, soy isoflavones, vitamins D3 and K2.
Dentavital Cell-Active Glutathione – Glutathione is a tripeptide molecule that prevents damage to important cellular components from peroxides, free radicals and other reactive oxygen species. It is produced naturally by our body and all of the other antioxidants that we consume, such as vitamin E and vitamin C, depend on it to function.
Dentavital CoQ10 Multi – A comprehensive wholefood multivitamin and mineral formula incorporating antioxidant CoQ10, beta glucan for immune support, and good all-round vitamin and mineral levels including optimal levels of vitamin D3 & vitamin B12. This is a 1 or 2-a-day multivitamin and mineral formula. Hydroponically grown cruciferous vegetables provide many of the minerals in this formula. It also contains vitamin C, B vitamins as well as beta-carotene, vitamins D3 and K2. These nutrients follow food metabolic pathways and thus supply the nutrients in their most bioeffective form.
Dentavital Phyte-Inflam – Dentavital Phyte-Inflam contains the natural anti-inflammatory ingredients, curcumin from turmeric and gingerols from ginger root and also contains piperine, a black pepper known to significantly enhance the activity of the other ingredients in the product.
Last updated on 29th November 2017 by cytoffice
As always,a fantastic article.
I was always given unpasteurised cows milk as a child.
I think it has greatly helped me .
Also I am a homeopathy devotee which I believe strengthens my body to throw off disease.I am rarely ill or at the doctors.
Good article but the title is not appropriate. Thank you.
I have been happily taking Cytoplan for several years now, though not every day. I see here that there are various DentaVital products. I tend to have mouth and ear fungal infections. How do I decide which to focus on? Can you clarify this for me please? I also often take Capriylic Acia plus = I don’t really understand how it all fits together.
NB, potent life-style issue for me is sugar-consumption (live with elderly mum who always has sweet stuff around in the evening).
Dear Kathleen
Thanks for your question on our blog. If you are getting frequent infections then it would be a good idea to focus on immune support. From a diet point of view – avoiding sugary foods is important as these suppress the immune system and can also contribute to an imbalance in gut flora. If you could persuade your Mum to have some dark chocolate (70%+) in the house that would be a better choice than biscuits etc. Otherwise keep all sugary foods out of sight and in a tucked away cupboard. Supplements that I would suggest are:
CoQ10 Multi – an all round vitamin and mineral supplement. Take 1 per day with breakfast. If you feel an infection starting then increase to 2 per day
Dentavital 1-3 1-6 beta-glucan – 1 per day with food. Again if you feel an infection starting then increase to 3 per day.
Saccharomyces boulardii – 1 per day. Take on an empty stomach ideally. You can take this long-term. From time to time you might like to switch to Fos-A-Dophilus instead for a couple of months.
Caprylic Acid – take this daily for a couple of months and then have a break. Take 1 capsule 2x per day.
You may also be interested in our free health questionnaire service. If you complete and return a health questionnaire we will send you some written diet and supplement recommendations. This is a free service http://www.cytoplan.co.uk/nutrition-advice/educational-literature/health-questionnaire
Best wishes
Clare
I suffer from mouth ulcers, could you suggest what I can take for that. I currently take a Holland and Barrett super one vitamin tablet which helps but I worry that I’m taking far to much of several vitamins within this tablet.
Hi Ben,
Thank you for your question, as you will have read in the blog there can be a number of factors that may contribute to mouth ulcers. A multivitamin and mineral is a good idea as a foundation and there may be other supplements that it is worth considering. You mention that you are concerned that some nutrients may be a too high in the Holland and Barrett supplement you are taking. I have had a look the product and whilst I cannot really comment on another brand, I notice that this supplement contains iron which men would not need at that level. It also contains calcium and most people obtain sufficient calcium from their diet so we tend to recommend calcium only if there is a risk of low bone density etc, however it is only included at a medium, not high, level.
We do offer a free health questionnaire service (available here) if you would like us to look at this in more depth. If you complete and return a health questionnaire, it will be reviewed by a nutritional therapist and we will send you some written diet and supplement recommendations.
I hope this helps.
Thanks,
Abbey.